Existence and stability of standing hole solutions to complex Ginzburg–Landau equations
نویسندگان
چکیده
We consider the existence and stability of the hole, or dark soliton, solution to a Ginzburg–Landau perturbation of the defocusing nonlinear Schrödinger equation (NLS), and to the nearly real complex Ginzburg–Landau equation (CGL). By using dynamical systems techniques, it is shown that the dark soliton can persist as either a regular perturbation or a singular perturbation of that which exists for the NLS. When considering the stability of the soliton, a major difficulty which must be overcome is that eigenvalues may bifurcate out of the continuous spectrum, i.e. an edge bifurcation may occur. Since the continuous spectrum for the NLS covers the imaginary axis, and since for the CGL it touches the origin, such a bifurcation may lead to an unstable wave. An additional important consideration is that an edge bifurcation can happen even if there are no eigenvalues embedded in the continuous spectrum. Building on and refining ideas first presented by Kapitula and Sandstede (1998 Physica D 124 58–103) and Kapitula (1999 SIAM J. Math. Anal. 30 273–97), we use the Evans function to show that when the wave persists as a regular perturbation, at most three eigenvalues will bifurcate out of the continuous spectrum. Furthermore, we precisely track these bifurcating eigenvalues, and thus are able to give conditions for which the perturbed wave will be stable. For the NLS the results are an improvement and refinement of previous work, while the results for the CGL are new. The techniques presented are very general and are therefore applicable to a much larger class of problems than those considered here. AMS classification scheme numbers: 30B10, 30B40, 34A05, 34A26, 34A47, 34C35, 34C37, 34D15, 34E05, 35K57, 35P15, 35Q51, 35Q55, 78A60
منابع مشابه
Some new exact traveling wave solutions one dimensional modified complex Ginzburg- Landau equation
In this paper, we obtain exact solutions involving parameters of some nonlinear PDEs in mathmatical physics; namely the one-dimensional modified complex Ginzburg-Landau equation by using the $ (G'/G) $ expansion method, homogeneous balance method, extended F-expansion method. By using homogeneous balance principle and the extended F-expansion, more periodic wave solutions expressed by j...
متن کاملExact solutions of the 2D Ginzburg-Landau equation by the first integral method
The first integral method is an efficient method for obtaining exact solutions of some nonlinear partial differential equations. This method can be applied to non integrable equations as well as to integrable ones. In this paper, the first integral method is used to construct exact solutions of the 2D Ginzburg-Landau equation.
متن کاملOn a Cubic-quintic Ginzburg-landau Equation with Global Coupling
We study standing wave solutions in a parabolic partial diierential equations which consists of a cubic-quintic equation stabilized by global coupling A 2 (y) dy : We classify the existence and stability of all posssible standing wave solutions.
متن کاملOn the stable hole solutions in the complex Ginzburg–Landau equation
We show numerically that the one-dimensional quintic complex Ginzburg–Landau equation admits four different types of stable hole solutions. We present a simple analytic method which permits to calculate the region of existence and approximate shape of stable hole solutions in this equation. The analytic results are in good agreement with numerical simulations.
متن کاملWave-unlocking transition in resonantly coupled complex Ginzburg-Landau equations.
We study the effect of spatial frequency forcing on standing-wave solutions of coupled complex Ginzburg-Landau equations. The model considered describes several situations of nonlinear counterpropagating waves and also of the dynamics of polarized light waves. We show that forcing introduces spatial modulations on standing waves which remain frequency locked with a forcing-independent frequency...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1999